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ABSTRACT

17565

The equations defining errors generated during the spin-up of sym-
metric rigid bodies and subsequent thrusting of the spinning body are
derived from Euler’'s dynamical equations and transformed into inertial

coordinates. Examples of both spin-up and thrusting errors are given.
for the Ranger lunar landing capsule and an Apollo-shaped planetary

entry capsule.

The stability of nonrigid spinning symmetrical bodies is also dis-

cussed. Equations describing the precessional motion are given, and a

simple mathematical model is analyzed. Results indicate that to mini-

mize errors in the spin-up and thrusting phase, a high spin-rate is de-

sired, whereas to minimize errors during coast, a low spin-rate is

needed.

I. INTRODUCTION

More than a dozen space projects have successfully
utilized spin stability as a mode of attitude control; many
other space applications have been viewed analytically.
This Report deals with three phases of spin stability—
the spin-up process itself, thrusting the rigid body after
spin-up, and the stability of not-so-rigid bodies during
coast,

Two projects presently under the auspices of the Jet
Propulsion Laboratory (JPL) have investigated this area.
They are the Ranger Blocks IT and V and the Mariner
Mars ’86. The Ranger rough-landing capsule was to have
been separated from the parent spacecraft by spinning-
up with canted nozzles (to a nominal 350 rpm in 1 scc),
so that a positive separation velocity was attained during
spin-up. Shortly after separation, a solid propellant
rocket motor (which constituted roughly % of the total

mass) was ignited, removing approximately 8800 ft/sec
from the incoraing velocity vector. It was necessary to
determine the velocity vector at motor burnout.

The possibility of a planetary entry capsule to be
separated from the fly-by spacecraft was considered for
the Mariner Mars '66 mission, and is definitely being
considered for future planetary missions. The physical
separation of the capsule from the spacecraft, and the
accuracy of the required velocity vector were studied.
One method involved releasing the capsule from the bus
with springs, spinning-up immediately, coasting for a
while (to ensure minimal impingement of the rocket
exhaust on the spacecraft), then igniting a rocket motor
to give the required separation velocity. For most veloci-
ties considered, a constant capsule mass (during burning)
could be assumed. The question arose as to how accurate
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the velocity vector was when added to the capsule,
considering the spin-up as well as the thrusting errors.
Another question which arose was with regard to the
stability of the capsule after the entire separation ma-
neuver (if it were still spinning at its design rate). If
stability was required (say, for telecommunications),
then a recurrence of what happened on Explorer I* could
not be tolerated.

It is believed that the tools necessary for the solution
of the three aforementioned problems, and sufficient

15hortly after launch, Explorer 1, a satellite shaped like a cigar and
spun about its axis of symmetry, began to increase its wobble angle
until finally all spin was about the transverse axis.

examples, are given so that the conclusion and equations
may be generally applied.

In the spin-up and thrusting Sections (III and V), the
applied torques are assumed body-fixed and constant.
Neither gravity nor solar pressure affects the errors since
they are inertial forces. Aerodynamic forces are not con-
sidered.

Since the areas discussed in Sections III, IV and V
were investigated separately, each Section is self con-
tained, and depends at most on the general discussion in
Section II.

Il. RIGID BODY EQUATIONS OF MOTION

A. Euler’s Dynamical Equations

Consider the rotational analog of Newton’s second law
of motion in inertial coordinates:

L=240)=%ma S

where L is the external torque, J the angular momentum,
II the inertia tensor?, and Q the angular velocity. Re-
calling that the time rate of change of a vector (4) in a
moving reference frame of angular velocity (Q) with
respect to some inertial frame is [A4)ineria = [A]‘}?fﬁ&
+ [Q X 4], Eq. (1) may be rewritten

L= [%(H n)]

fnertial

- [%(n n)]w. + QX (0K
il @

2For the results discussed in this Report, II is diagonal, i.e.,, the
cross products of inertia are zero. When a body of symmetry is
designed to be spun, dynamic balancing can move the principal
axes of rotation coincident with the geometrical axes to a degree
beyond that of interest to this study. However, for the case where
the products of inertia cannot be assumed zero, and for the effects
of products of inertia on spin-up, an excellent treatment is given
in Ref. 1.

The Q in the above 2quations is that of the moving
frame with respect to i~ inertial framne. The torque (L)
has been constrained to b« budy-fixed.

Equation (2), when expanded, yields?,

Lo — Iy — L)wyw, = L, (3a)
Loy — (I — L) wp o, = Ly 3b)
I:; (l.)z - (lz- - Iv) Wz Wy = Lz '(30)

Equations (3) are Euler’'s dynamical equations, the basic
tool for the analysis carried cut in this Report.

If the z-axis is taken to be the axis of symmetry and
of spin* (whereupon I, == 1,), then a convenient method
of presenting the cross-angular velocities is obtained by

3The rate of change of inertla component in % (I Q),ie., 1w,

etc., must be assumed zero, since I., etc., must necessarily be
caused by a mass expenditure which is no longer part of the rigid
body. If not, and I., etc., is not the result of a dm/dt, then the
assumption of a rigid body is no longer valid.

4Spin is defi ed us the rotation about the body roll axis (w,) only,
and the cross plane rotation (w. and wy) is referred to as wobble.

\l'



letting o = w, + i uy, thercby mapping both components
onto’the complex plane. Noting that o = &, + i o, Eqgs.
(3a and 3b) combine to give

o~ iAow, =N (4)
L,+iL,

I
cuwe I, = I,, Eq. (3c) re-

whereA = I/, — 1, (-1 <A< 1,and N =

(cross-angular acceleration).
duces to

o = % = N, (angular acceleration of spin)  (5)

£

1t will be shown later that N, must be a constant for any
reasonable closed form of Eq. (4) and subsequent equa-
tions.

If all torques are zero or the body, then v = con-
stant = s, (initial spin rats), whereupon Eq. (4) is
immediately integrated to

o = w, 2 M { (6)
where wy = woz + 1 woy. The components of Eq. (6) are
wr = Rew = wozr COS A Syt ~— woySin X St
oy = Imo = wyy COS Aot + wo,SINA Syt

When time is climinated as a parameter, it is seen that
the magnitude of the cross-angular velocity i* constant,
o = (o2 + o2)" and rotating about the angular mo-
mentum vector J at a frequency A s,.

Note that the magnitude of the spin rate, o, is de-
pendent on s, and N alone, hence would remain con-
stant regardless of the value of N = N, + i N,. This is
true only because the body is symmetrical.

B. Inertial Transformation

The transformation from body-fixed coordinates to
inertial coordinates is made with conventional Euler
angles.” The X, -- Y, — Z, frame is inertial, the x —y — 2
frame being body-fixed. The three angular rotations are

——

sAnothe: Eulerian angular transformation for analog computer sim-
ulation is given in Appendix A.
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Fig. 1. Euler angle transformation

shown in order on Fig. 1, and are discussed more fully
in Ref. 2. They are

[ cos¢ sing O
[¢] =| —sing cose O;
L 0 0 l_J
1 e 0
(61=10 cos¢ sind|;
L0 —sinf cosé
cosy sing O
[v] =| —siny cosy O (7
L O 0 1

As seen in Fig. 1, the transformation from Euler rates
to body-fixed rates :s

I'w, siné siny cosy Ol ¢é
oy | =|sing cosy —siny 0|4 (8)
l_wz_, cos 6 0 1iLy

The full angular transformation [y]-[v]- [4] is discussed
in Section IV-E.
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If the cross-angular 1elocities (w, + i w,) are mapped
- onto the complex plan< from Eq. (8),

w = (0 + isinb) e* (8a)
which becomes (when ¢ is eliminated):
0= [9 + i(w: — ¢) tan 9] e

If a small angle approximation for 8 is made, which is
valid in light of the smali errors to be encountercd,
then (8 ~ tan 6)

w=[8+i(o: — §) 6] ¢

Defining a complex angle of attack by
a = fe Y
then » and ;a are related by
a4 iva=o )

which can be verified by substitution. This complex angle
of attack @ = @ (cos ¥ -- i sin y) is seen from Fig. 1 to be
the angle of attack (8) as seen by an observer sitting on
the X,-axis for R, a and the — Y, axis for Ym a. How-

ever, a is only a mathematical intermediary to obtain tlie
inertial angle of attack in complex form. This is given by

a; = aeifedt (60

Thls c2n be shown as follows: From Eq. (8), w: = ¢ cos 8
+ ¢ and cos 6 = 1,

/ .dt = 1[(¢coso +¢)dt = /(cosod¢ + dy)
=i(¢ +v)
whence Eq. (10) becomes

a, = ae''t? = fei¥ et P Y = ggit (11)

: Equation (11) then is the full inertial transformation, for

expanding a; = 6 (cos ¢ + isin ¢), which is the angle
of attack 4 as seen by an observer sitting on the X,-axis
when ¢ = 0, and the Y,-axis when ¢ = z/2. Thus, R¢ a,
wili give the X,-component of the time-varying angle of
attack, and Jm a,, the Y,-component.

In a similar manner, it can be shown that the complex
angular rate as measured in the inertial X, — Y, direc-
tion is

w = w ei.f"xd‘

. SPINNING-UP OF SYMMETRIC RIGID BODIES

When a symmetric rigid body is free in space with an
initia} rotation (4,) about its pitch-yaw axis, and is then
torqued about its roll axis to a spinning condition, three
errors result:

1. The angular displacement at the moment of spin-up
due to the initial conditions 8, and §,. That is, with
respect to the inertial reference, there is an angular
displacement error (8,), a rate error (6,), and a time
from release to spin-up (8¢) which causes an angle
of ©, + 6,5 between the body-fixed z-axis and
the true inertial axes at the time between release
and spin-up of the body. Since ©, and 8t are
parameters which are totally independent of this
analysis, their effect is omitted here, but must be

determined and vectorially summed with the errors
listed below for a full separation error analysis.®
The new inertial axes are then defined as the body-
fixed axes at ¢ = 0, thus omitting this angular error
from further consideration.

2. When the body is spun-up about the new set of
inertial axes, it is found that the angular momen-
tum vector, which defines the direction of spin, is
dispiaced at an angle a,. This rotation of J is the
result of both the initial tumble rate (4,) and the
errors associated with the spin-up itself, which arise
out of the body trying to spin-up about axes other

8See section I11-D,
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than principal, thus generating cross products of
inertia.

3. The body-fixed z-(spin) axis rotates about the
angular momentum vector at an angle . This wob-
ble is caused also by both initial and spin-up errors.
In the analysis, 8 is derived first since the develop-
ment of 4, depends on B.

A. Spin Jet Misalignment

The errors in the spin-up are caused by an initial
condition and an error associated with the alignment of
the body-fixed torque vector. This error in the torque
vector is made up of the five components shown in Fig.
2. If there are n spin jets, the nominal thrust of each
being F, and if the jets are evenly spaced about a circle
of radius R, the plane of which is i from the c¢.m. of the
body, the torque in the z-direction is (using small angle
approximations)

L.=nFR (12)

The possible effects of AR on L. are neglected. By in-
spection of Fig. 2, the RSS cross-plane (i.e., x-y) torques
are’

L= 3nF’-‘ [(Rf)‘-‘ + (a2 + (rﬂ)"’] + n(zA'F)gs%
(13)

If AF = kF, which is the case when spin jets are mani-
folded L = \/n'F (a + ib), the complex number being
for the direction of the net cross-plane torque which is
not known from Eq. (13). However, when the cross-
plane torque is compared to the primary torque, it is seen
that

L=L,+iL,=vL; (14)
7Assuming the misalignments are randomly distributed and no

biases exist, especially in alignment tooling. If biases do exist, then
Eq. (13) is ccnservative.

ROLL AXIS

Fig. 2. Spin jet misalignments: a. top view; b. side view

where

a+ib

Vn R
Equation (14) is the form which will be used for the
cross-plane torque. v is defined as a real number without
loss in generality. Furthermore, the body-fixed x-y axes
and the inertial X,-Y, axes are defined to make the ini-

Hal rate 6, and the cross-plane torque L act in the same
direction, thus pr >enting a worst case.

B. Primary Torque Considerations

The cross-plane angular acceleration is

L L. I. . y
N:T:=7T= TrN-=@A+0yN: (15)
Eliminating . from Egs. (4) and (5),
w“i)\mngtit=y(1+A)Nz (16)

It is immediately seen that the form of N, governs the
solubility of Eq. (16)%. In general, the f N, df ‘troduces
a constant of integration, the initial spin rate w,.. If par-
tial restraint of the bocy during spin-up is made, wo. >0,
and Eq. (16) has no analytic solution. Therefore, w,: =0
from here on.

Even after making w,. = 0, the form of N. is quite
restricted Jor closed solutions. If a cold gas spin-up sys-
tem is considered, ther, f N.dt = c(1 — e"*), since an
exponential decay of thrusi (and an exponential increase
in spin rate) is the best approximation. As can be verified
by substitution, the constant value ¢ acts in the same way
that w.. does in the solubility of Eq. (16), preventing a
closed form solution. Polynomial approximations to the
exponential either introduce constant terms like the one
above, or consist of functions which have singularities
at t = 0. However, since the exponential thrust spin-up
has 2 maximum torque early in the spin-up (decaying to
zero) the errors associated with this form are less than
those of constant torque, and the method presented here
is conservative. Valid approximations to the exponential
with the constant thrust method can be made. Hence,
it may be concluded through some devious logic that
N. must be constant for a closed form solution of Eq.
(16) and subsequent differential equations, and
wy = fN;dt = N;t.

sIf a digital solution of Eq. (18) and subsequent differential equa-

tions is used, any representation of N is allowable. The statements
made here pertain to more “closed” solutions, in terms of known
functions, which also require digital solutions, but can be easily
generalized.
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C. Wobble Error During Spin-Up

The angle at which the body-fixed roll axis wobbles
about the angular mrmentum vector can now be deter-
mined. When N, is constant and w,: is zero, then Eq. (16)
is integrated to

iANs .

ii{{ s t "‘\N' 72 2
w=yt\7,(l+4\)€ 2 / dr + we€ 2
° -
an

where v, = wor + i wy, and 0 < t < ¢, (torque time) is
the running variuble. The integral in Eq. (17) is a Fresnel
integral, the results of which have been tabulated after
the proper change of variable (Refs. 3 through 7).

The angular velocity vector, £, may then be written
in body coordinates

Q=g i+ awj+ w-k ,

~ where ;= Re 0, v, = Im o from Eq. (17), and . = N: t.
Whent = t, (the upper limit on torque iime), »will assume
the value attached to Eq. (17) when t, is substituted for ¢,
and w, = N.t, = s, (the final spin rate), a design quantity
which is sure to be known. The angular momentum vector
is then J =1 Q, where I is the column matrix I” = (I; I, L,).
Figure 3 shows the relationship among the body z-axis

Ny

<

Jr=Trw, 1
. ‘ﬁ\

wy Jy:l, w,

h il w,

Fig. 3. Wobble angle, 8

(spin), Q and J. When ¢ = t, and all external torques have
ceased, J is invariant in space while the spin-axis 5 and the
angular velocity vector £ coplanar with J and 3 rotate
about J at an angular rate % AN:t:. The angle 8, which is
the wobble angle between » and J is seen to be

\/12 ]; Lo
tanl/.?l— = Ijso
orletting tan{g!~|B|
. ”
!'BI_(I;-)E)S (18)

In complex form, Eq. (18) is

w

ﬁ:(l+,\)sq’

which is seen to be upon expansion using Eq. (17) (¢ = t,).

AN, 4 -iAN: iAN

N i 242 1 2 ® : L2

ﬂ =X 2 ! e 2 dr + —_— e 2 £
4]

So (1+A) s,
Letting
iAFs 2 ft; -idN,
K,=—N—=e-r‘/ " ds (19)
$o o
and
_ 1 iAN, ‘:
K=" (20)
then
B = 'yKl + o K2 (21)

where K, and K. are functions of the shape of the rigid
body (A) and of specific spin-up values (N, and ¢,), but are
independent of the error producing parameters y and w,.

Looking at Eq. (18) again,

lxN. N ty  -iAN:
=le T 1 z ” W
Iﬂ{ S0 [, dr + (1+A)So
= yNg 1!
1B1=15, o dr + (1+A) (22)

Equation (22) is the form of the wobble angle which
shall be used. The | 8| given in Eq. (22) is the initial
condition for the thrusting phase (to be discussed in Sec-
tion IV).
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D. Inertial Displacement of J During Spin-Up

The angle through which J moves with respect to the
inertial X,-Y,-Z, axes is now determined. Recall that Z,
and z are coincident at ¢ = 0. When torquing begins,
J builds up from 0, wobbles about Z, then when ¢t = ¢,,
J comes to rest at angle a; from Z,. Consequently, when
determining a,, the inertial transformation defined in
Section II is needed. Using the value of w found in Eq. (17)
in the inertial Eq. (9),

. AN, o ft CiAN:
a+iN,ta=yN,(1+\) ez / ez ' dr
0
iAN,
4 moe_ﬂ— ©
the solution of which is
iNg @
aez =a,+ Ky + K uw, (23)
where
t i(1+A)N; - T -iAN; 2
K3=N:(1+A)/ e / 1% delds
[+ 0
(24)
and
£ N0
K4 :/ e 2 d‘r (2'5)
o

The integration in K; is seen to be of the same form as
the integral in K, (Eq. 19), i.e,, a Frcsnel integral.

Then, from Eq. (10)

if widt if N tde ;lz—t’
a=ae =ae =ae
and Eq. (23) becomes
g =a,+Kyy + K, 0 (26)

Since at t = 0, z and Z, are coincident, @, = 0. However,
for an overall analysis, it must be remembered that
a, = 6, + 6, 8t (discussed in the Introduction).

E. Combination of Body-Fixed and Inertial Errors

If the spin-up error is to be considered by itself, i.e., not
used as an initial condition for some maneuver after spin-
up, then the error in the angular momentum vector g, is
considered the prime error (8 being a wobble super-
imposed on a,). However, if a maneuver is to be performed

after spin-up (e.g., thrusting), then a, and 8 must be
combined in either of two ways:

1. If there is a coast period between the end of spin-up
and start of maneuver, so that the position of 3 with
respect to J may be considered random (i.e., 5 has
precessed many times about J), then ¢, and 8 are
independent and treated as separate errors; i.e., g, is
the error incurred during spin-up and 8 is an initial
condition imposed upon the subsequent maneuver.

e[ = o[+ |8 (@)

2. If the maneuver takes place immediately after spin-
up, such that the position of s will be known with
respect to J, then a, and 8 must be vectorially added.
In this case, the spin-up parameters must be well
defined, and experimentation must agree with theory
so that the directions of a4, and 8 in fact correspond
to the analysis.

It will be shown later that the wobble rate ¢=~(1+\)s,,
so that as A— — 1 (a long thin rod spun about its axis
of symmetry), ¢ can become small, saying that 3 rotates
very slowly about J, hence the direction might well be
predicted. For the vectorial addition, refer to Fig. 4.

P

Fig. 4. Combination of a; and 8
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Since a; = 6 (cos ¢ + isin ¢) when ¢ = 0 (standing on the
X, axis), an observer sees R. 4, = 6, consequently it is just
that component which is then projected onto the Y.-
direction (in this case —9, since @ is defined counterclock-
wise). The same is true for 9= a;, but no sign change is
required. 8 is defined in the normal way. Hence, in
Fig. 4, a unit sphere is superimposed on the vector dia-
gram, and the angular components are shown projected
. on the sphere. It can be seen that

Ime=3Inp — Rea
Ree= Ref + Ina
" whence
e=fB—1igq (28)

and | €| is the required error.

A discussion of the errors defined above follows, with
examples given for €, 8 and a,.

F. Discussion of Integrals

In order to solve numerically Egs. (17) and (26), the
quantities K,, K., K; and K, must be evaluated. in all
cases the variable is ¢ where 0 < t < ¢,. As mentioned
previously, K, and K, are Fresnel integrals, and the double
integral in K, is the integral of a Fresnel integral. To get
these integrals in familiar form, a change of variable is
required. The usual argument in the exponent of the
Fresnel integral is iru“/2. Hence, if this substitution is
made in K,, K; and K,, they become

_,_.t,
A 1ANy

K, (t) = J f "“"‘ du

\/‘\'TW ).

Ka(tl)—w 1“ / -Te dedu
'TJ.—
- .‘—!ul d
K%)= \J¥; (1 T )\) oo

which can be verified by substitution. The final form of
the K's is reached by getting rid of the clumsy design
parameter N.. Note that, for constant N.,

N. = $o/t,

Then, by substitution
1
SN2 = L5ty

and the four K’s assume their final form

- 1A %0 £y _‘_’“’uz d
K'. (t:) = Aso b e - € 2 U
0

(29
1 il 8oty
(1T N u
Kiit.) == f _uz / - ——‘2 dx du
8
V_sm:m
Ki(t) = |5 Tt du
A TFNs | 8

’ (32)

When the shape of the body is stipulated, and the spin-up
parameter s, is given, then the values of K = { (t,) may
be determined, and the errors may be calculated with
assumed values of y and w,. As an illustration, Figs. 5

* through 14 show the K’s as functions of ¢, for a few com-

binations of A and S,

The Fresnel integrals of K, and K, are of the following
form (see, for example, Ref. 4):

v k)
C(v)=/ cos—2—u2du
[

S(v)=[” sin — u* du
o 2
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where

o2 du=C(v)+ iS (uv)

E(v)=/:

may be formed, and the conjugate of E is

E(U)":/V e 7Y du=
0

It is seen immediately that C(0) = S(O) = 0; however,
C(v) and S(v) must be expanded asymptotically to de-
termine

C (v) — iS(v)

lim S (v) = =

&

lim C(v) =

t1-+% =

Reference 3 discusses briefly the nature and expansions
of the Fresnel form in K;. However, no tables of general
parameters are known to exist. When the above proper-
ties of the Fresnel integral are applied to the K's, it may
be deduced that

| K, (1) | < 095 [mt‘ (33)

1

| K|S o5y (34)
K0 <k [ )
| K, ()] <095 |75 ’jf; — (36)

where the constants are the maximum absolute values
of the oscillating terms.

G. General Observations

The K's are bounded from Egs. (33-36); therefore, the
following conclusions (some obvious) may be drawn
about the errors.

1. Ast, increases, keeping s, constant,

tWhere k is sume finite number. This can be seen from Eq. (31),
where the inner integral is a Fresnel integral, which is always
bounded. This Fresnel integral is multiplied by a bounded sinusoid
¢i™w/2 and integrated, the result of which must be bounded.

i | K, (t) | decreases, implying that the error con-
tribution of the effective spin jet misalignment (y)
to the wobble angle (8) decr ases as spin time ¢,
increases.

ii | K, (t,) | increases without bound, stating that
the initial tip-off rate, w,, has had an increased time
to act through, thus increasing a,.

2. As the value of s, is increased, keeping ¢, constant,
X, K., and K, decrease (K, not being affected). This
indicates that s, should be as large as possible,
which could be expected from the gyrodynamic
effect of increased spin rate.

3. The quantity | K; (t) l is independen* of ¢, and s,
in its limiting condition (Eq. 35). K, contributes to
the a, error as amplifed by y. A physical interpre-
tation of this is not immediately apparent.

4. All four K’s are functions of the shape of the rigid
body (A).

(%41

. As t; — 0, the four K's reduce to (using L Hos-
pital’s rule on K,):

K, (0)=1
1 P
KO =g
K,(0) =0
K,{0)=0

which when substituted into the equations for q,, 8
and then e yield (a; = 0),

Wo — ]z + .’:
(1 - )\) Sao N Is

e=p=y+ (37)

which is immediately seen to be the rotation of J
caused by the instantaneous application of the spin-
jet misalignment, plus the initial tip-off component

I/]-.

Equation (37) can be used as a quick method of approxi-
mating total error. However, it should be remembered
that this idealized case (i.e., t, = 0) is not conservative at
all, and nsually represents the lowest value attained.
However, if ¢, is small, and an appropriate fudge factor is -
used, Eq. (37) is an “order of magnitude” approximation.
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H. Limiting Cases

1. A = 0 (sphere). The values for the K’'s are (using
L'Hospital’s rule on K, and K,)

Kl = 1
K, = 1/s,

isot‘
K; = i(l-—e 2 )

Sy w

and the errors are

Wo

B=v+
So

is"tl t so t
a;=i7<1-—e z >+wq "s,,lE;‘/-%r—l%

€= f —ia; = € + i¢,

= f 2 — cos St 1, [t [st
e,~y(2 cos 3 )+m0<So + 5 53\/-_” €>
€y=-ysin§%~mov%cz"%ﬁ$

Notice that the \/#, in the numerator of the second
term of a, makes € divergent when o, 5% 0. As t, —> 0,
€ = g, the value of Eq. (37).

2. A = —1 (thin rod). As A - —1, K, increases without
limit (K, is finite because (1 + A) appears in the upper
limit of the integral), the other K's being bound.
This means that spinning-up a long thin rod about
its symmetry axis (I, = 0) when an initial tip-off
rate is present, is highly unstable. This is intuitive
in that if I, = 0, there is no spin momentum to
counteract the tumble of the rod.

3, A = + 1 (flat disc). As A = + 1 (its maximum value),
the coefficients of the K’s are minimized, indicating
that for a given spin-up time and rate, an infinitely
flat disc is optimum, This is obvious from gyro-
dynamic considerations.

I. Initial Conditions

. The relationship between the initial tip-off rate (w, and
6,) is found from Euler’s rate transformations (Eq. 8)

wp - - 4'>sin05in¢+§cos¢

1"

€y = ésinacos‘p-—e.sin\b
wy = ¢;cos(9+4./

Referring to Fig. 1, it may be stipulated that the initial
conditions at t = 0 are

=0

=0
6=0 =4,
p=0 y=0

which result in

L
wor = 0y ‘"01/:0 ; we: =0
where

(4
wy = wyr 1wy = 6.

Thus, it is being stated, without loss of generality, that
whatever direction the tip-off occurs in, defines the X,-Y,
directions.

J. Numerical Evaluation of Errors

As mentioned in the Introduction, the two cases of
interest in this Report are the Apollo-shaped capsule and
the Ranger landing capsule. Since the K’s need only the
body shape A ana final spin rate s, to be evaluated, it
was decided to keep the error sources 6, and y strictly
parametrical. Spin-up time (¢,) is taken with wide enough
bounds to encompass most situations. The values used in
determining the K’s are the following;:

APOLLO RANGER

A 1/3 —3/4
Final spin rate, rad/sec (s,) 1,2,5,10 30
Spin-up time, sec (t,) 0-10 0-3

Plots of both the real and imaginary portions of K,, K.,
K; and K, vs t, are given in Figs. 5-14.

The numerical evaluation of K, K, and K, was, at first,
very frustrating. Fresnel integrals are known for their
difficulty in approximating over a large range of argu-
ments. However, the excellent orthogonal polynomial
(Chetyshev) approximation given in Ref. 6 is satisfactory
for K, and K,, while the corresponding function-generating
polynomials were of sufficient accuracy for K;. Asymp-
totic expansions for Fresnel integrals and for integrals of
Fresnel integrals are given in Ref, 4,
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One numerical example should suffice in illustrating
the use of the K's in Figs. 5-14. Recalling Egs. (21), (26),
and (28)

B = K\Y 'l' ngu

{

a; = K:;Y + K| Wy

e=fR—ia

30
/
} - \ /
g 1.0 /
g \
0 \’fz
—
\ B
“tol— \
() 20 a0 0 80 100
1y, sec
Fig. 5. Real parts of K,, K., K, and K, vs 1,
(so = Yrad/se¢c, A = + Y5)
30
. JZN N
/ \w
g /
’5 1.0 KI
%/F \(z
st ~
0 K5
-9 20 e 50 80 160

1, sec

Fig. 6. Imaginary parts of K, K., K, and K, vs t,
(ss = 1rad/sec, A = + h)

20
Ka

< S
2 /
o K T~
\Q\
e/
- 1.0 |
o 26 30 60 3.0 10.0
t,, sec
Fig. 7. Real parts of K, K., K; and K, vs t,
(s = 2rad/sec, A = + )
3.0
2.0 IA
X, /_\\ /
: P A
/-—"" r-\ L)
) — |
2
-1.0
0 20 a0 6.0 ) 100

1), sec

Fig. 8. Imaginary parts of K, K,, K; and K, vs 1,
(s = 2rad/sec, A = + )

For Ranger, the specification for y is 0.006 rad with a
spin-up time of 1.0 sec’ If an initial tip-off rate of
w = 6, = 0.003 rad/sec is assumed (realistic), then from
Figs. 13 and 14,

9Aeronutronic Publication U-200, Final Technical Report—Lunar
Rough Landing Capsule Development Program, Newport Beach,
Calif., pp. 3-28.
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(o] 20 4.0 60 8.0 10.0
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Fig. 9. Real parts of K, K., K, and K, vs 1,
(s, = Srad/sec, A = + %)

3.0
2.0 —)
< 6 \ /\ [\\ A/«/
£ /
> ¢

0 20 40 60 8.0 10.0
1,, sec

Fig. 10. Imaginary parts of K,, K,, K; and K, vs t,
s, = S5rad/sec, A = + V3)

ReK,= —~ 0208 R.K.= + 0034
Re K, = --0238 R.K,= + 0263
In Ky = + 0094 JnK, = + 0129
In Ky = + 0671 In K, = + 0438

12

o« \/\/\/\L/\//:
S8y VJ{ I
Ky
S 8

0 10.0
!,, sec

Fig. 11. Real parts of K,, K,, K, and K, vs ¢,
(s, = 10rad/sec, A = + 3)

20"

—
<
g
<
B
=

- ey
Kz
10
0 20 40 €0 80 16.0

1, sec

Fig. 12. Imaginary parts of K, K., K, and K, vs
(so = 10 rad/sec, ). = + Vs)
where

B = — 00011 + 0.0012 1 and a¢; = — 0.0001 + 0.0062 i
and € = 0.005 + 0.001 i and | €| = 0.005rad
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Fig. 14. Imaginary parts of K;, K,, K; and K, vs t,
(s, = 30 rad/sec, A = — %)

IV. THRUSTING OF SPINNING SYMMETRIC RIGID BODIES

A great deal of work has gone into analyzing the effects
of rocket thrust misalignment on accelerated spinning
bodies. References 4 and 8 are the classic works, done
during the 1940’s, primarily on spin-stabilized rockets
launched from launchers with and without fins. The
basic theory used in this Section is a combination of these
and other referenced works. No claim is made to origi-
nality, except, perhaps Eq. 67.

The one design parameter which is common between
the last Section and this Section (except shape of the
body, A) is the design spin rate s,. An output of Section
III, the wobble angle g,, along with s,, is used as an
initial condition here. The inertial axes X,-Y-Z, are rede-
fined for this Section. When ¢t = 0, the Z, axis coincides

with the angular momentum vector, J'°, and the Y, axis
is along the direction of — g, (coinciding with the ¢ direc-
tion when ¢ = 0; see Fig. 1).

First to be determined in this Section is the angle of
attack, a,, of the thrusted rigid body"'. This inertial angle
of attack defines the position of the thrust vector as a
function of time. The thrust vector is then integrated
10Thus, the error between Z, and J of Section 111, ai, is subtracted

out here. Of course, this error must be considered, and is dis-
cussed in Section VI.

WThis g, differs from that in Section III in that (a), this a; is in a
different tirne domain since the X, Y., Z, axes arc redefined when
t=0 and (b), the ar here includes wobble angle. Hence, ar, == 8o
when t =20,

13
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into velocity, and the resultant error in both the magni-
tude and direction is cousidered. There are certain sim-
plifying assumptions made throughout this Section, such
as constant mass, inertia, etc. A discussion of the effects
of these assumptions is found in Appendix B.

A. Thrust Misalignment

Thrust misalignment, which can be defined as the
lever arm through which a given thrust acts, gives the
body both a rotational and a translational acceleration.
The translational motion will be neglected in this Report
since in nearly all applications of the dynamics described
herein, such motion is second order. Therefore, the need
for consilering two separate types of thrust misalignment
is avoided (see Fig. 15). If F is the thrust vecter, constant
with respect to the frame shown, & the linear Jisplacement
of the point of thrust application (e.g., due to uneven
rocket nozzle erosion), and a the angular misalignment
(due to rocket nozzle misalignment), then the l:ver arm
(p) through which F acts is seen to be (letting o ~ sin a),
8 + fa. If, however, an “effective thrust misalignnient”
angle ¢ is defined such that { = 8/4 + a, then the lever
arm is

p=1¢ (38)

which requires only the definition of the effective thrust
misalignment angle, ¢. This assumption is allowable, since
in the true definition of thrust misalignment, part of the
o error went into translational motion which is neglected

BODY-FIXED
COORDINATES

fe———y(7)

Fig. 15. Thrust misalignment angles

here, and p, a measure of the misalignment, is estimated
by ¢ to the accuracy of small angle approximations.
Appendix C contains data on the effective thrust misalign-
ment trom the 2nd and 3rd stages of the Scout launch
vehicle. This data was used in the numerical evaluation.

It is also required that the thrust vector intersect the
roil axis, i.e., no roll torque is present. {f this is not the
case, then nonconstant effects on spin rate during burning
must be considered, which make the differential equa-
tions nonlinear (see Appendix B).

In determining the torque vector from Fig. 15,

F=Ftj+Fk

r=—1k (39)
whence torque

L=rXF=1F{i (40)

which is all in the x-direction. As stated beforc, all the
quantities constituting torque (4, F, {) are constant with
time.

B. Body-Fixed Equations of Motion

Substituting the above torque into Euler’s dynamical
equations (3) gives

¢:,~nww,=‘fc=zv (41)
. L. _
b= =0 (42)
Letting f o, dt = s,, the solution of Eq. (41) is
— _ _if‘;’_ ik t __‘i_
w-—-(wo w)e o (43)

where vy = woy + iwgy is discussed below.

The wobble angle, g, as a fuaction of time, is given by
Eq. (18) as

= _li_‘._o (44)
Resolving Eq. (43) into components, noting that J» N =0,
wr = Rew = wyz COS ASet — (woy — N/AS,) sin Asot
oy = Imo = we, SINASet + (woy —— N/AS,) c0s Asgt + N/As,
which reduce to (when time is eliminated)
+ (wy — N/AS)? = 0, + (woy — N/As)?* =R? (w)
(48)

2
(l)'
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Wy

/ R(wo)
I——J/
N

NS0

w(?)

w, (OUT) “
Fig. 16. Body-fixed rates of a symmetric body
with torques

which is a circle with its cent-r at (0, N/As,), and a radius
of R(wo) = {02, + (woy — N/Aso)? }i The complex radius
vector, w(t) rotates around the circle at an angular rate
AS, (see Fig. 16). Since the coordinates are bcedy-fixed,
the angular momentum vector (J) and the angular ve-
locity vector (), which are coplanar with ., rotate
about the axis of symmetry of the body.

C. Initial Conditions

Certain relationships among the Eulerian angles need
to be derived before initial conditions can be stipulated.
Just before ignition of the rocket motor, the spinning
body has no torques acting npon it, and the form in which
the initial conditions appear must be determined. It is
given that when ¢ = 0,y = 4/0, wor = 8o, 0 = 6, = B
(from Section III), and ¢ = 4;0 {precession rate). Needed is
@y = wo: + 1 wgy in terms of the given quantities, Without
loss in generality, the other Eulerian terms 6, ¢, y are
zero initielly, The proofs that § = 0and ¢ = constart vill
not be given here. The Eulerian angular transformations,
Egs. (8) are

oz = 0
Woy = ¢:0 Sil’l 0() =~z (50 00 (49)
So = wor = 4;000590 + \Lo’*""-'d;o + \l;o

whereupon
.
Wy = o + i(l)oy = i¢o 60

Since it is the secund order differential equations
(o = d?¢/dr*, ¢ some angular displacement) that are of
interest, only two initial conditions must be stipulated
(80, 6,). Hence, some relationship must exist between ¢,
and s, and €,. This can be found by eliminating  in Eqgs.
(4) and (8a) when ¢ = 0 and N = 0 and initial conditions
exist,

(::'—i;\wwz=N-’~‘-0 (4)
0= (0 ising) eV (8a)

Taking the time derivative of Eq. (by) and inserting the
initial conditions, i.e., 6 = 6o, ¢ = o, ¥ = yo, 8 = 0, = 0,
and y = 0,

¢ £in 6, (Yo + A wp;) = 0 (50)

which has roots of ¢ =0, 6, = 0 and yo = X wez. If 6, = 0,
there are no initial conditions (since there is no wobble).
If 8, 0, which necessarily implies that $o 540, then
Yo = — Ao for Eq. (30) to hold, and when this value for
¥, is substituted into Eg. (49),

d+N)s
$o = cos B, (51)
and Eq. { 9) becomes
00 = oo = i (1 + \) oo (52)

for small 4,.

D. Complete Inertial Transformation

Now the value for g, (the inertial angle of attack) can
be determined. Equation (9) stated that @ + i s, @ = o,
and when the value for » (found in part B) is substituted
and the differential equation is solved, the result is

i8af — iwo N — pi(A+1)aot
ae a + {so(A + 1) t 2 A()H—l)} {1 ?

and from Eq. (10),
a=a eij’m,dt =ge'tt

Letting Wy = i(l + /\) S() 00 and ao = a10 = 60, Eq. (53)

becomes

a;=00+{
§

ol AU
— e — ) 1~— ei(.\n)aot
2a(r+1) 7
N .
- c— 1 -— euot}
As? {
(54)
Without going into too riuch detail at this point of the
development, it can be seen that a, is the sum of two

sinusoids of differing amplitudes and frequencies, The
frequency s, is the spin frequency, and (1 + A) s, is seen

‘
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from Eq. (51) to be ¢, or the initial precession rate if
cos 0, =~ 1. The amplitude of the first term can go to zero
if N counteracts the wobble angle, 6.. However. this only
nulls the amplitude to the precession part, and does not
cause a; to go to zero. If 4, = 0, the amplitudes of the two
sinusoidal terms differ by a factor of (A + 1), which is
bounded by 0 and 2. It will be seen later that if 9,540,
then it can become a predominate term.

E. Inertial Thrust Vector

Since the inertial angle of attack (a,) is now known
with respect to body-fixed parameters, the motion of the
thrust vector in inertial space can be determined. The
tool needed is the full Eulerian angular transformation.
Rewriting the rotation matrices (see Fig. 1),

cosé¢ sing O]
[¢] =| —sing cos¢ O}
0 0 1]
1 0 0
l=}o cosd sing
| 0 ~—siné cosé@ |
[ cosy sinyg O]
fvl=[ —siny cosy O
B 0 0 1]

Then the operation of [y¢] - [6] * [4] = T on any inertial
vector will transform the same vector into body-fixed
coordinates, or conversely

Ainerllnl = I-L‘ Ahody-ﬂnd = [4’] 1. [o]_l * ['l’]—l Ahod)’-flxed

(55)
where the matrix multiplication yields
€0S ¢ €Os ¢ — €os §sin ¢ sin ¢
[t = sin¢ cos ¢ -+ cos @ sin y cos ¢
sin gsin ¢
— oS ¢ sin yy —cos @ cos y sin ¢ sin ¢ sin ¢
—sinysing + cos@cospcosy —cos¢sinb
sin 4 cos ¢ cos §
(56)
Since I'* is orthogonal, i.e., | ' | = 1, the inverse of the

matrix is equal to its transpose. The body-fixed thrust

vector (F) is given in Eq. (39). If a small angle approxi-
mation is made for 6, then the inertial thrust vector, F,
resolved into its coordinates from Eg. (55) above, is

F! = — F{(cos¢siny + cosysin¢) + Fosing

F, = —F{(sin¢sing ~cosgcosy) —Fcos¢

F, = Fl@cosy + Fcosd (57)

The cos ¢ is retained in F’ for later consideration.

If a complex inertial thrust vector is defined F,
= F’, + iF . then by substitution, it is found that

F,, =iF ([ei — ge'9) (58)

The exponent in the first term is determined from (cus #~1)

i dt = i[(é.cos0+4',)dt=i(¢+¢) = st
(59)

and the second term is by definition (Eq. 11), a,. There-
fore,

F,, =iF{¢ et —a,} (60)
The above equation is the desired form of the complex
inertial thrust vector. It is seen that if the two error
sources { and 6, are zero, F,, = 0.

Equation (57) gives the thrust in the Z, divection. The
first term (F { 0 cos y) is the product of two small angles
(¢ and 6) times a sinusoid, which, when integrated into
velocity, will average zero. Hence, the very good approxi-
mation

F! = Fcosf (61)

is made.

Depending on how F, is used, cos § can or cannot
equal unity. If the change in the velocity due to the effects
of thrust misalignment and initial conditions is required,
then the small angle approximation should not be em-
ployed. However, if angular errors are of prime interest
(as they are in this study), then little inaccuracv is
incurred by letting cos 6 = 1.

F. Velocity Vector

Velocity can be determined from the value of the in-
ertial thrust vector. The velocity vector is defined in the
same way as the thrust vector, i.e., one component along

“
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the inertial Z, axis, the other component defined in the
complex cross plane.

‘ (62)

where i is the average mass of the body during thrusting
and g = 32.2 ft/sec®. If mass cannot be assumed constant,
then the integration of Eq. (62) must be done numerically.

Then, from Eqs. (80) and (62),
r g ¢ ;s txel
UJ'V—— 77—1-/; ’F{{e t a;} dt

which is, when a, (Eq. 54) is substituted and integrated,

’ ._i_gf__i{ ist
v, = m{ s,,(c 1)

— _.ﬁ_ 18(1+A)t
X ESVAY 2

+ By —(A~B—00)}

So
where, temporarily,

N N

A=m-+1)s - 0.,andB= )\Sﬁ

Qe

(o)

5
4
O

n

o

then reducing,

! —EF_ _C_-- _"V._ isel _
Yy TR 3[s A:?.][e l 1]

N — 6. 151400
+ [ YOS P TS Ty ][" el

itN
ATV

(63)

Equation (63) is the decired form of the cross velocity.
Breaking v into its coordinates reveals its character.

v; = Revy, = Cicosst -+ Cocosso(1+A)t — (C,+Cy)
v, = Imv], = Csinst + C,sins,1+A)t + Cst

where the C’s are the constants in Eq. (63). The above
are seen to be modulated sinusoids, the first with a con-
stant bias, ~ (C, + C,), and the second with a ramp
function (C; ¢) impressed over it. The general form of v/
and v, is shown in Fig. 17. In the plots, either A ~ —1
and C,;» C,orA =~ +1and C, » C.. If A = 0, the quali-
tative solution shown is not valid.

Plots of v/ vs v’ are shown in Appendix B. These cor-
roborate the cross-plotting of Fig. 17.

If cos 6 = 1, the integration of v; is straightforward.

0

t t o
;=§_—/ F;dt=—§—/ Fat=58¢ (o)
mo mo m

(b)

s\«°?€

(o)

Fig. 17. Shape of cross velocities V. and V,
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However, if the small angle approximation cannot be
made, i.e., the change in v} is desired, then

H
o,’=£[ Fcosddt=-g£/‘ cosla,|dt, (65)
m |, m Jo

and numerical integration ‘s necessary.

G. Velocity Dispersion

If v2 = 0 due to the absence of initial conditions and
thrust misalignments, then the resultant velocity would
lie entirely upon the Z, axis. When v/ 5 0, the tip of the
resultant velocity vector is moved from the Z, axis (Fig.
18) at an angle

~

r

v 1))
a= tant X~ 2 (66)
t 4 z

a is seen to be the velocity dispersion angle caused by
the presence of a cross velocity, ¢/, . The final value of a
. is reached when the time ¢ = ¢£;, the burning time of the
rocket motor.

Equation (66) is expanded to (with the use of Egs. 63
and 64)

_];, N —_ 0o is(1+A)t
3 ()\(A-i-l)zs';’ (A+l)so)(e 1

iN
HGESYH

(67)

It is seen from Eq. (67) that if N = A (A + 1) &, 6,
the precession amplitude vanishes. The spinning ampli-
tude can furthermore be nulled if the thrust misalignment
{ = 6, (1 + A)/=, but the bias term, N/(1 + a) s}, re-
mains. Only if { = N = §, = 0 does a(t) = 0 for all values
of t.

Of prime interest is the magnitude of g, ie, |a| =
(Re?a + Im? a)*. The radial direction of a with respect
to the inertial system (angle 4 in Fig. 18) is of no interest

o

Viy

Fig. 18. Velocity dispersion angles

and is treated as a random variable because of the ran-
domness of the 6, direction with respect to the true iner-
tial system defined in Section VI. If it is required, it is
seen from Fig, 18 to be tan -*(v}/v).

The wobble at the end of burn can be considere& an
output error. If this is denoted by 8,, then from Egs. (43)
and (44),

e del _,___N
Iﬂll_—(l-i')t)so-oo AA+1)s? (68)

T+ is seen that if —~1 < A < 0, i.e,, I; > I, then the right
term is negative and | 8, | > 6,. N itself is always defined
positive (the worst case).

Another error which might be of interest (neglected
here) is the error in the magnitude of the velocity vector
(o is the error in direction). The value of v/ is obtained
frcm Eq. (65); the odd term appearing in Eq. (57) (ie.,
F , 6 cos y) still being neglected. This v/, is compared to
the value of the velocity had the thrust always been
applied along the Z, axis, Av. = ¢ In (mi/ m,), ¢ being the
exhaust velocity of the gases, m; the initial mass beforc
thrusting and m; the final mass when t = t;; i.e, m; — m(
= mass of propellant expelled. The difference in magni-
tude of the two velocity vectors has been less than 1%
for the range of parameters the author has dealt with,
This means that the initial conditions and thrust misalign-
ment cause less than 1% of the linear momentum of the
rocket motor to be changed by spinning,

i S
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H. Limiting Cases

A close inspection of Eq. (67) yields the following in-

formation abuut a:

ag, Vrod

1. Taking limits on ¢

As t grows very arge,

(i _ _ N _Fu
limlal= . = atNs ~ ILs

(69)

recalling that N = Fi{/I,. Hence, after t gets very
large, a approaches a constant value which is in-
versely proportional to spin-rate squared, and directly
proportional to acceleration (F/m). This can be a
useful approximation if the body goes through
enough revolutions, so that the amplitudes of the
first two terms in Eq. (67) are small compared to
a,. If the parameters are further broken down, it
can be seen that F = I,/t, where I is the total im-
pulse of the rocket motor, and 4 is the burning time.
I, is a measure of the velocity requirement (since #;
is a motor parameter). When the above value for
thrust is substituted into Eq. (69), the result is

o = (’—I‘-‘-)—l— (70)

2
L 54 ty
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Fig. 19. a, vs s2 I for suveral values of K

Figure 19 is a plot of a.. vs s2 t; for several values of

Ir 2t
L. )

. At the other extreme (as { grows small), after
L’Hospital's rule is applied

1(i:r;|a]= a0 =|{—0| (1)

which is evident from the position of the thrust
vector at £ = 0 with respect to the inertial Z, axis.

. Taking limits on A

As A— 0 (sphere), a Elows up in both the first
two coefficients (Eq. 67), as would be expected,
since a sphere has no body-fixed gyrodynamic sta-
bility. However if t — « at the same time, the re-
sults of Eq. (69) are

. . _N_
{‘-f}) il-!onm a } - S: ?
the same result is obtained if the Limits are taken
in reverse order and L'Hospital's rule is applied. If
t— 0as A > 0, from Eq. (71),

lim{lim a}=|£—001

A=0 tao

As A= —1 (thin red), the second ana .iird terms
of Eq. (67) blow up and cause divergence of a. This
also can be anticipated, since when A = —1, I. = (,
and there is no angular momentum generated along
the z-axis to counteract the effect of thrust mis-
alignment.

When A — +1 (flat disc), the three coefficients in
Eq. (67) are minimized with respeci to A, thus min-
imizing a (t). This results from the maximum mo-
mentum developed in the z-direction.

. Taking limits on s,

If 5, 0, a divergent form of Eq. (67) appears.
This, however, is not indicative of the case since
the small angle approximations no longer hold. Ap-
pendix D treats this special case.

As s, —> w0, the resultant error a(t) = 0, since in-
finite stability is being approached.

19
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I. Maximum Envelope of Solutions
If the constant coefficients in Eq. {(67) are denoted K,,

K, and a., respectively, ie.,t
Ko e — 1y 4 K s <1 4 10,

(72)

the real and imaginary components of a may be written
as

K
ap = 92.(1=-t—'cossot

+ Ii’ cos So(1 + AM — (K'—-:l(i)

K, .
a; = Jmu=—t4smsot

+ %sin so{l + A)t + ay, (73)

If the maximum values of the sinusoids are chosen in
such a way that if both K, > 0, K, > 0, or both K, < 0
and K, < 0, (a is always >> 0), then

2
ar < == (K; + K)
o <SR (K + K2 + o (74)
or if K, < 0 while K. > 0, then,
. 2 ‘K2 + K2)»
ar < T( Pt 2)
1

(1 ¥:3 < T (Kg - Kl) + [+ £ (743.)
The maximum magnitude of a will then be given by

la(t) | < (a2 + a2)* (75)

If Eq. (74) is substituted into Eq. (75), it is seen that
{a ()] is a fourth order polynomial which approaches a
hyperbola as a,, — 0. The curve at the point ¢ = 0 has a

singularity, and thus must be mated to the | a () | axis
. at a,. Figure 20 shows how the envelope of | a(t) | behaves.

$1The K’s used here are totally independent of those used in Sec-
tion II1, and are the result of an unfortunate choice of symbols.

20

a, N~y

Eq. (75)

Eq. (67)

ja(]

\ // \ N\
=T
¥ Y V

'
Fig. 20. Maximum envelope of solutions

The dashed lines are the real solution of | a(t)| in Eq. (67).
It is to be noted that the body should go through at
least 3 revolutions, ie., s,fy/2x > 3 for this envelope
approximation to be valid.

J. Some Examples

A few examples are given of the results in this Sec-
tion. The basic parameters will be the same as those of
the last Section, ie., Apollo and Ranger capsules, same
spin-rate, etc. The error output of Section III is used as
an input here (wobble angle 6,). Table 1 lists the perti-
ment data. The results are shown in Figs. 21-27.

Table 1. Basic parameters

Apolio Ranger

K* +216.4 — 5,000,

—10,000,

—20,000
Thrust misalignment {, rad 0.004% 0.004¢%
Rocket burn time 5, sec 5.0 9.6
Capsule shape A % —%
Initial spin rate, o, rad/sec 1 2 5 10 30
fnitial wobble angle 8., rad | 0.025 0.013 0.005 0.003°** 0.001**

ty £2
Mg

X = , @ catch-oll term arlsing out of Eq. (67).

“*Based on outputs of Section I,
1See Appendix C.
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s, = 5 rad/sec, 6, = 0.005 rad
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Fig. 24. o (1) vs t for Apollo-shaped capsule
so = 10 rad/sec, 6, = 0.003 rad
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Fig. 25. a (1) vs t for Ranger capsule K = — 5000

Three values of K are used for Ranger because of the

_ large mass change involved during burning. In fact, the
approximation for a (¢) does not hold too well in cases
such as this.

Superimposed on the results of Eq. (67) are the maxi-
mum envelope curves of Section IV, Part 1. For the case
of s, = 1.0 rad/sec, 6, = 0.025 rad (APOLLO), the enve-
lope lies off the graph. As seen from the curves, the
greater ihe value of s,, the better the approximation.
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Fig. 26. a () vs t for Ranger capsule K = — 10,000
T T
l
00250 \\
k-] r\ n L
E’- V\ VaS2aYa s
i 00125 ‘
F |
N S
0 192 364 5.76 768 960
TIME, sec
Fig. 27. o (#) vs t for Ranger capsule K = — 20,000

V. STABILITY OF NOT-SO-RIGID SPINNING BODIES

From classical rigid body dynamics it is known that a
perfectly rigid rotating body iy stable if it is spinning
about the axis of either greatest or least inertia in torque-
free space. If nonrigidity is present in the form of bend-
ing, sloshing, rubbing, etc., then spin about any axis
except that of greatest inertia is unstable. This insta-
bility is in the form of a precession which causes fluctu-
ating forces to dissipate energy in the nonrigid parts of
:..2 body until the spin is about the axis of greatest inertia.

When the Explorer I satellite was launched, the above
phenomena was not taken into account, and the sateliite
(a cigar shaped body with long, flexible antennae ex-
tending from the center, perpendicular to the axis of
symmetry) was found to change its axis of spin from
that of symmetry (least inertia) to almost a transverse
axis (greatest inertia) in 1%2 hr. Subsequent analysis
(Ref. 9) determined that the whip antennae served as
ideal energy dissipators during precessional modes.



JPL TECHNICAL REPORT NO. 32-644

Other possible applications of spinning for inertial
stability have brouight this question to light. As will be
seen later, this p.oblem is an extremely difficult one to
solve if obvious sources of nonrigidity are not pre-ent.
As an example, the whip antennae were removed from
the satellite for the Explorer II1 launch, and it tock 10
days to wobble 75 deg. This rate is slow enough that a
number of items might have caused or contributed to it.

This Section investigates the rate at which the angular
velocity vector traverses from that of spin about an axis
of minimum inertia to that of maximum inertia. The
fluctuating acceleration on an element of mass is found,
and a qualitative look at the effect of initial spir: rate
on wobble is made.

A. Dynamical Equations

Since the rotational energy is the coupling quantity
between wobble angle 6 and time,

de __ (doN\/dT

dt _(dT)(dt, (76)
where T is the rotational kinetic energy. d6/dT is easily
derived from rigid body dynamics, whereas T is a more
difficult term to find. The angular momertum vector re-
mains invariant at J, regardless of the rotational energy

variation (see Ref. 10). Figure 28 shows the position of J,
with respect to the body-fixed axes x, y, z, and

Jo=Li+1,j+].k

2 (%)
lf()
JI
8
J -
> r
/
/
LK o v
(J'z + '/rz)%

(N

Fig. 28. Resolution of angular momentum vector

where i, j and k are the body-fixed unit vectors. For a
body of revolution about the z axis,

.=l , Iu:‘lxwv , J:=Lo:

and the rotational energy is

T = (o byt o = g O30 g1
(77)
and from Fig. 28:
J:+J2=J2sin*6
J2 =]z cos? 6 (78)

where J, = I.s, and is constant. Equations (77) upon
substitution and rearranging, become

2T __ sin*é cos?§ _ 1 1 1 .
oL LT +(1, 1,>°°”

If energy is dissipated, # must increase as T decreases,
which implies that I, > I, for a real solution. This con-
firms what was said before, that the system is tending
toward the axis of highest inertia.

If voth sides of Egs. (77) are divided by the initial
rotational energy (T, = I.s?/2), and the ratio T/T, is
defined as T,, then

T, =1+ rsin’@ (79)

where A = I./I, — 1. This equation is of marked interest
in that it states that the way in which the kinetic energy
decreases is only dependent upon the shape of the body
(A) and the wobble angle (). This fact will be used later
in determining the effect of initial spin on 6. Equation
(79) is plotted on Fig. 29.

The rate at which ¢ changes with respect to T, is
do —- dT' -1 - 1
dT, — | dé A sin 26

- 'é‘{(r, =1) (x1+ I- T,)}“

(80)

which is shown in Fig. 30. It is seen that d8/dT, has no
real solution outside the limits (1 + A) < T, < 1. These
bounds, of course, define the limits on the wobble angle 6,
ie, T, = 1 + X s total stability § = 90 deg, and T, = 1
is the condition when 6 = 0.

23
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[t is important to note that both the function 6 = {(T,)
and its derivative ¢’ = d6/dT, are asymptotic at the
limits of T,. Therefore, neither condition is ever really
reached. If 9 = 0, i.e., T, = 1, all acceleration is normal
to the spin axis and no fluctuating forces are present.
Hence, the body is stable. By the same token, as § — 90
deg, the accelerations are approaching a constant magni-
tude from the other direction, which indicates that § = 90
deg is never reached, only approached. Therefore, when
the wobble angle is said to be going from 0-90 deg, what

24

is really meant is that it goes from some initial’? value 6,
to some other value, which, in the case of Explorer 111,
was 75 deg for the 10-day number quoted.

The value of d6/dT, which is needed in Eq. (76), is
then

de _ dT,. 7+ _ 1
ﬁw[T‘) da] "~ T, A sin 26 (81)
which is seen to be an inverse square function of the
initial spin s2.

B. Internal Forces

The next question of interest is with regard to the
forces which cause the internal bending, sloshing, etc.
Initially, each element of mass dm in the body has im-
pressed upon it a large centrifugal acceleration 2 p (see
Fig. 31) which gradually damps out. The fluctuations
arise out of the coupling of y with ¢, the precession rate.
For this portion of the analysis a new coordinate system
is defined, also based on conventional Euler angles.

Let an orthogonal triple ¢, 4, z be defined along the
body-fixed roll axis, the origin being z above the inertial

12Qr as an input, B, from Section IV, which is the final wobble angle
at the end of the thrusting phase.

ZO
z K 0 dm
P
Dt
z
¥ .
¢

]

Fig. 31. Rotating coordinate system

.
r
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crigin The ¢ axis is constrained to pass through the Z,
axis at all times. Hence, the new axis rotates about the
inertial X.,-Y.-Z, axes at a rate ¢. The distance 2 defines
the distance along z where the element of mass dm is
situated. The fact that §-4 0 will be neglected here,
since the rate of change of waobble angle is normally
orders of magnitude less than é and ¢. It is also seen
that the discussion of the forces on dm will be inde-
pendent of ¢, hence ¢ may be explicitly omitted, since
the coordinate system will be defined when ¢ = 0.

The problem may then be stated as: given a coordinate
system (¢, 9, z) rotating about an inertial system /X,-Y.-Z,)
at an angular rate ¢ which will be time variable. A par-
ticle dm at a distance p from the z axis is rotating in the
¢, 7, = system at a rate . What are the nonconstant forces
on dm?

Since p and Z are constant with time, in the general
equation for the acceleration of a point in a rotating
reference frame (see, for example, Ref. 11, p. 210), all
but the centrifugal and coriolis terms vanish. The mass
dm is seen to have a centrifugal acceleration p ¢ with
respect to the moving z-axis; and as seen in Fig. 31, an
acceleration ¢° (Z sin § — p cos 6 cos ¢) with respect to
the Z,-axis. Since the fluctuating terms are of principal
concern, one pertinent force parallel to the X.-Y, plane
plane is

F, = ~d'>'-’ p cos 6 cos ¢ dm (82)

The coriolis term in the general acceleration equation
is 2 w X v, where w is the ¢ vector as reflected in the
¢, n, & axes.

® = $sin0i+ (j;cosok
where the unit triple i, j, k is defined in the ¢, 4, z frame.

The velocity of dm in the ¢. », = frame is

v~—pn,b§m i+ pqzcrnsq/]

and the coriolis acceleration is then
(X v) =2(— pl,b.d; cosfcosy il pypeosbsinyj

+ p;,&xj;sinﬂcos\pk

The magnitude of this in the {-) plane is sewn to be

constant, pw,‘) cos # rotating at a frequency y Thus, an

observer sitting in dm would not experience a fluctuating

force in this plane. The fluctuating force is along the
z-axis and is

F.=2py ¢ sin 8 cos y dm (83)

I, and F, can be vectorially added to determine that the
component of force normal to the ¢- plane (i.e., along
the z-axis) is

F.= (2 ¢ — ¢tcosf) psinfcosydm  (54)
and the component in the ¢~ plane is

F.p=F cosf= — éa‘"’p cos v cos® 6§ dm

(85)

However, the important thing tc note is that the force
in either plane can be expressed as

F = f(p, 6, v, §) cos ¢ dm

C. Variation of ¢ and 111 with 6

As 6 increases due to the internal dissipation of energy
and the body seeks a higher inertia, spin is transferred
from ¢ to ¢ in such a way as to conserve the angular
momentum. The relation between these two is found from

J. = 1.0.=],cos 6

and J, =1I.s, wheres, is the design spin
rate, ideally all about the z-axis, and

U)::¢)COSG+I,'/

From the first two equations above, . = 1 (6) is deter-
mined where substitution in the third yields
q‘;) cos @ (86)

‘r;’ = (Sn -

Thus, it is seen that when 4 = 0, J/-i— d; =g,. The de-
pendence of ¢ upon 6 is seen from

ID+ =122+ w}) = ]isin® 6
= <j;sin 8 siny -+ écoslp
oy = d;sinecosy/ - G.sin\b
whence it may be determined that
¢ = 83 (A + 1) - 2 cse 0 (87)

Here it is seen that if 6 is assumed zero, then qb is con-
stant and the device for transferring the spin from x,’/ and
¢ is no longer real. When 0 < ¢ < 90 deg, ¢ is well
deﬁned and as § = 90 deg, the r'ght hand term becomes
6 csc 6— 6 and

=g (A+ 1) — 6 (88)

2%
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for a final value. As 6 — 0, the ¢ and y tend toward coin-
cidence, and the orthozonal system loses one degree of
freedom and the solution of Eq. (50) has as a root sin 6 = 0.
Since at 6§ = 0, v, = ¢ + ¢, the dearee of freedom may
be used by stating that ¢ = 0. This assumption is
apparent since in Eq. (82). F, 1aust vanish when 6§ =0
(all acceleration is constant), thns ¢ = 0. In the same
manner, F., vanishes at 8 = 0: when 8 — 90 deg. all accel-
eration is along the z-axis, hence F, = 0; and since y = 0
(Eq. 86), F. = 0.

Defining ¢ = 0 when =0 and ¢ = sz (A + 1) —
. # csc? 6, the moment ¢ > 0 might seem inconsistent.
However, the coupling between ¢ and ¢ (throach 6) is
perfectly valid when 6 > 0. In fazt, Ec. (87) is exact.
" It is at the singularity § = 0 that difficulties arise. Since
" ¢ and ¢ are indistinguishable then (with respect to the
mathematical interpretation, but noi to the physical),
$ may arbitrarily be picked.

The forces on the element dm are then seen from Egs.
(84) and (85) to be (assuming § = 0 in Eq. (87)

F,=—5s2 (1 + A)psin()cos9cos¢dm
Fip= —s2 (1 + A)?pcos®fcosy dm (89)

The value of 6 to be used in determining ¢ (Eq. 87) is
that in Eq. (76), which in turn needs dT/dt as an input;
. hence, an iterative solution is required. If, at the end of
spin-up, injection, etc., s, and 6, are known, then 43(, can
be determined from Eq. (51). F, and F, for the first in-
. crement of time can be found. Then from experimental
damping data, energy dissipation is determined, i.e.,
" dT/dt. § is calculated from Eq. (76) and substituted into
Eq. (87), where a new, larger value of ¢ is found. The
iterative loop is continued as § — 90 deg.

D. Effect of Initial Spin on Tumble Rate*’

Since the ratio of the kinetic energy T to T, is inde-
pendent of initial spin (s,) the motion of the same body
(A) can be compared at several different s,. This is be-
- cause the motion will always be of the form in Eq. (79),
dependent only on A and 6.

13This Section is an expansion of a private communication from
Professor Leverett Davis, Jr., of California Institute of Tech-
nology to the author.
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Let the motion of the clement of mass dm be approxi-
mated by a linear oscillator, the equation of motion of
which is'

dm (u + %d + of u> =F,cos (90)
where v, is the natural frequency of dm, u the displace-
ment, and Q the ratio of total energy to energy dissipated
in one period. F, is the magnitude of the fluctuating driv-
ing force discussed in Section B, and can be characterized
as F, = s2C, (A, ), where C, is independent of s., and
is only a function of the shape of the bedy and the
wobble angle 6. The frequency ¢ can be written as
s. C; (a, ) from Eqs. (86) and (87) (letting 6 = 0). The
solution can then be written as

st F,cos(it +8)
" /(5% = C2 s F F (w0 C.5./Q)

8 = tan_l - zwn C.‘ ‘S:)“ 2
Q (“’o - C3 So)

u (91)

where

Note here that the time varying value of F, was inte-
grated as though it were a constant. This is allowable
for two reasons: first, s, is usually orders of magnitude
greater than 6, the driving force behind F,; and second,
an attempt is being made to determine the effect of vary-
ing s, on identical bodies (i.e., X’s are equal). This
implies that the way in which the body varies its internal
energy is determined by Eq. (79), which is a function of
6 alone once A is stipulated. Hence, for comparison pur-
poses, it little matters what form F, assumes.

The energy dissipation is obtained from the energy
integral when nonconservative forces are involved and is

d .
75- = i (92)
where 7, is the nonconservative force, which, in this case,
is the damping term,

G = “’5 &t dm (93)
whence

dT — wo *

T u*dm

14The equations and analysis here can for the most part be found in
the first two chapters of Ref. 10,



u is calculated from Eq. (91). Since u* is an oscillating
function [sin® (¢t + 8)], the average value of T over
one cycle is

dT (l)(l
KT, =6 <@ dn

s¢ C? F?
—_ 2 o,
0 0 e 4

2 \2 U’oc‘.'su :
(2 —C2 so)'-i—( Q _> 20

(04)

The equation {or 6 is then

C; F; 0
21.Asin26

d
dt

Three case, present themselves:

a. If the natural frequency is very high - 4id system),
so that w, >> s, and the damping is very small,
Q >> 1, which implies w, >> s5,/0), then Eq. (95)
reduces to

where
_ CiF:
3T, Asin 26’

ard the rate of change of 6 is proportional to
s4 . Hence, the time reqaired to go the same number
of degrees (say from 2 (o 75) would be proportional
to 1/s;.

b. If Q is very small (large damping), so that
$/Q > > wp > > 8o, then Eq. (95) becomes

. ng
0 = PmnC?

and the time to go between equal values of 6 is
proportional to 1/s% .
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¢. When the natural frequency of the system is low,
ie., 8y > > w, then

6——1

QC‘

and 6 (and time) is independent of s,.

If y passes through a resonant frequency, ¢ = w,
at some point of the transition, then the energy
dissipation will be greater. The magnitude of 6 is
also a strong function of v, and Q. In case a, where
wo > > 8 > > 8o/Q, then 6, < P. In case b, where Q
is small, and o, and s, are intermediate, it may be
approximated that 6, ~- P (C: <1). In case ¢, where
wo is swall and Q is intermediate, C% << 1, and it
follows that 6, > P. It may be generahzed that

00>0b>oa

Explorer 1, with its long whip antennae with low
natural frequency, fell in case c,

As a rongh cut of the time required to tumble, if
<dT/di:>is assumed constant over the range of interest,
then

Ee L S LLLL :l ( )/dT\—l
{dr/dt Yo 27077 EANFPH

where { dT/dt>, 7}, is determined from Eq. (94).

E. Discussion

The problem may be reduced to this: Since the dynami-
cal relations (Section V-A) and forces on the element
(Section V-B) are known, it remains only to (1) recognize
those elements of the body which will be affected by the
forces, (2) define the mathematical model to which each
belongs, and (3) determine the values of the constants to
be used.

General conclusions are best summed up by describing
items to be avoided when designing bodies for spin.

1. Try to make roll inertiu greater than the inertia in
other axes {e.g., Apollo), in which case the problem
vanishes.

2. If this cannot be accomplished, make the bedy as
rigid as possible, avoiding any liquids, dangling wires,
etc. Make all bulkheads parallel to the roll axis stiff.

3. If neither 1 nor 2 is possible, keep the design spin
rate s, as small as possible within other system constraints.
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In general, it appears from past resuits that this phe-
nomenon is not hard to design around. If, by merely
removing the whip antennae on an Explorer I, the tumble

rate was decreased by over two orders of magnitude, then
one may conclude that internal damping is something one
designs in rather than out of the typical spinning bo-y.

VI. SUMMARY AND GENERAL CONCLUSIONS

A. Ercor Plan Summary

The overall errors discussed in the Report are depicted
* in Fig. 32, and can be somewhat broken down into chro-
nological order.

Section III

a. Initial errors of spin-up. These are two: a tip-off
angular velocity 6,, and an error angle at time of
spin-up which is 8, + 6,8¢, ©, being the initial dis-
placement, 8¢ being the time from release to initia-
tion of spin-up.

. Dispersion of the angular momentum vector from

the inertial axes during spin-up (a;).

. The wobble angle produced during spin-up (B).

Section IV

. Velocity vector dispersion angle (a) produced by the

initial conditions and the misalignment of the thrust
vector.

1
|
i
l
. | |
£9 |
x5 | | p
g - l s
52 | e
mE | | -
3 4 /
20 | |
1 I
<y | /
L8 | -
=0
2 7
3 | -
4 l J
| I
| g |
3 EFORE | |
momeoe | e |
|
PRE-SPIN—-UP SPIN=UP THRUSTING COASTING

TIME —»
Fig. 32. Overall error plan
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b. Velocity vector dispersion magnitude.

c¢. Final wobble angle (8,).

Section V

a. Effects of nonrigidity on wobble angle. This part is
not an error (as in Sections III and IV), however
it can affect the spacecraft performance if neglected.

B. General Conclusions

The first two conclusions may be stated categorically,
(1) whenever possible, A > 0, i.e., the inertia about the
spin axis should be as great as possible. If this is true,

errors in Sections III and IV are minimized with respect
to shape. and the discussion in Section V does not apply;
and (2) all error sources, such as initial conditions, thrust
misalignment, etc., should be minimized. Other conclu-
sions are: (3) during spin-up, both the spin torque and
the spin rate should be as large as possible; (4) when
thrusting, the number of revolutions through which the
body turns should be as high as possible, i.e., s,t, should
be large. As a rule of thumb (noted from the results of
Section IV), if 5,£,/27 < 3 revolutions, then little is gained
by spinning; and (5) for coast stability, the body should be
as rigid as possible and be spinning at the lowest possible
spin rate. The obvious contradiction between conclusions
4 and 5 is resolved by despinning after thrusting. Appen-
dix E contains general equations for despinning by the
“yo-yo” method.
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APPEN.uIX A

Orthogonal Transformation for Analog Simulation

If an analog simulation of spinning dynamics is desired
(including the angular rate transformation from body-
fixed to inertial coordinates), the conventional Euler
angles defined in Section II are found to be unsatisfactory.
This can be seen from Eq. (50), which gives the angular
rate transformaticn

wz sin @ sin ¢ cosy 0] ¢
wy | =|sinfcosy —siny O[] 4
©; cos 8 0 1|4

For the solution, the inverse of the above equation is
required, or, if the matrix is A,

¢i’ Wr
[é] - ﬁnw[w]
¥ wz

where |A | is the determinant of A and || A | is the adjoint
of A. By inspection, | A | = — sin 6, and since 4 is nomi-
nally zero, or if not, almost zero, the equations in (A-1)
are unstable for analog simulation. Another set of Euler
angles niust be defined in which the determinant of the
angular rate matrix is not nominally zero. Figure A-1
shows one possible transformation which is stable over
the region of interest. The rotations, in order, are

(A-1)

1 ¢ 0
[A] =10 cosA sinA
|0 —sinA cosA

- cosG sinG O
[G] =] —sinG cosG O
| 0 0 1
" cos 0 0 -—siné
(6] = 0 1 0
| sin 6 0 cos ¢
cos G cos 6
(8] [G] [A] =| —sinGcos @ + cos Gsin Asiné
cos Asin @

_.yo
Fig. A-1. Orthogonal transformation
and the angular rate transformation is
wz cosGeos® —sinf O A
wy | = —-sin G 0 1 G
wz cos Csin 9 cosd¢ O |léo
(A-2)

which can be verified from Fig. A-1. The determinant of
the matrixin Eq. (A-2) is — cos G, which if the body-fixed
y-axis is defined as that of spin, is nominally unity. Hence,
stable solutions of the inverse of Eq. (A-2) result. The
fully expanded transformation of the three rotations is

sinGcosA —cosGsin @ + sin G sin A cos 6
cos G cos A sin G sin 6 + cos G sin A cos §
~sin A cos A cos §

whence any body-fixed vector v is transformed into an

inertial vector ¥, by

Vo= [A]+[G)+ [6] "0
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APPENDIX B

Exact Formulation and Numerical Solution

I. NONLINEAR EFFECTS

If nonlinearities are present in the systein, ihe basic
differential Eq. (41) and subsequent equations cannot be
explicitly solved. These ronlinearities usually arise out of
more exact formulations of the problem.

a. Variable Mass During Buming. The largest single
cause of inaccuracies in Section 1V is the mass decrease
during burning, which decreases inertia. A good mass
approximation assumes a constant thrust, thus constant
mass flow rate,

m=mo—rht=mo——(—F-)t

o (B-1)
where m, is the total mass at # = 0, and Isp is the rocket
propellant specific impulse. Inertia changes may then be
characterized. If the rocket motor is considered a poi~t
mass at the end of a thrusted body (see Fig. B-1), then
the inertia change in the cross axes (pitch-yaw) is the
initial inertia decreased by a changing mass effect as
determined by the parallel axes theorem. In effect, the
“rigid body” mass (M) remains constant, while the rocket
motor attached to one end decreases in mass (m). The
pitch inertia (as a function of time) is

L{t) =Iy +In+ Mx* + m(l—x2  (B-2)

where Iy = inertia of M (rigid body) about its c.m.

I, = inertia of m (rocket motor) about its c.m.

[ = distance between mass centers (can be

variable),
£= ]
M+m
ROCKET MOTOR c.m. COMBINED c.m.
~ ol \t— x -]
N
> v
m M
la
p:
POINT OF THRUST ' ™
APPLICATION RIGID BOOY cm.

Fig. B-1. Schematic of mass variation

and m(t) is given by Eq. (B-1). The torque about the
pitch axis is then

L =F{(p+1-—1x) (B-3)

If the assumption of m made in Eq. (B-1) is not valid, then
whatever m(t) is assumed must be pointwise integrated.

Decreases in the roll inertia can be neglected, since to
a first order the mass thrown out by the motor takes with
it angular momentum, keeping the spin rate about the
roll axis constant at s,. Except in cases of very large
mass decreases during spinning, the variation of I. can
probably be neglected (since the mass of propellant being
expelled is usually situated close to the roll axis, thus
contributing only a small part of the total I.. In the case
for Apollo, all changes in inertia, both pitch and roll, are
neglected. However, for Ranger, when % of its mass is
expended during burning, these variations must be taken
into account.

b. Jet Damping. When a body, rigid or not, has a
cross-angular velocity (i.e., o = w, + iw, 55 0) during the
expulsion of mass along the z-axis, a damping arises out
of the fact that the cross o causes a “wagging” of the jet
stream, i.e., a change in the direction of the linear momen-
tum vector. The magnitude of this damping (Ref. 8, p. 21)
is proportional to the rate of mass expulsion, and to the
cross-angular rate. The damping occurs because, if o
increases, the rate of change of the linear momentum
vector of the exhaust gases is greater, and thus causes a
greater resistance to the increase in w. If 7 is the mass
flow rate, and the distance (I + p — x) from the combined
cm. to the point of thrust application, the jet damping
termis —om(l + p — %)

c. Small Angle Approximations. The expediency of
letting sin 8 ~ 8 and cos § ~ 1 in the inertial transfor-
mation is obvious from the analysis. From practical
considerations, this approximation is usually valid, since
real systems seldom can tolerate angular disturbances
greater than 5-10 deg without intolerable error buildup.
If, however, this approximation cannot be used, the
solutions of the inertial transformation must be made
with the full Eulerian expansion, resulting in transcen-
dental differential equations.
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d. Roll Moment. During the burning of some rocket
motors, a roll torque is generated. If :his is to be con-
sidered, the . vector in Eq. (41) is no longer constant,
but must be varied according to the roll acceleration.

e. External Forces. Gravity and solar pressure are in-
ertial forces, hence they may be neglected with respect
to the spinning dynamics, but must be included in any
velocity calculation (e.g., Eg. 62). Aercdynamic forces
are only partially inertial since they depend on the angle
of attack 4 (sometimes on ¢), and are independent of y
in a body of revolution. Good discussions of aerodynamic
forces can be found in Refs. 4 and 8.

f. Cross Products of Inertia. It has been assumed in this
report that all cross-products vanish, since the present
technology is such that the principle axes of the body
and the geometrical axes can be made almost coincident
in bodies of revolution. To consider the cross products,

Il. GENERAL

Combining as many of the aforementioned effects as
possible, the basic equation for the body-fixed w is then
L . o L

@ + w(t) {A(t) m(l+p x)}wm—g(—{j-
where the time functions of w;, A, x, [, L, I, and m (if not
constant) are to be stipulated. E£quation (B-4) is then
numerically integrated to determine the cross-angular

(B-4)

the full inertia tensor must be included in Euler’s dy-
namical equations and carried along in the subsequent
analysis (see, for example, Ref. 1 or 12).

g. Nonrigid Effects. If the strain on structural mem-
bers and mass deflections are to be considered, the
problem incre...es tremendously. Euler’s dynamical equa-
tions must be modified to include cross-products of inertia,
time-varying coefficients, and cther nonlinear effects
discussed beiow. Each effect of nonrigidity must be
treated separately, e.g., mass unbalance will affect inertia,
cause cross-products, c.m. shift, etc.; straining of the
structural members will cause mass unbalance. rotation
of the thrust vector, etc.

h. General Nonlinear Effects. These include variations
in thrust vector misalignment with time, variation of
thrust with time, etc. Each one of these must be included
in th: basic differential equation and be numerically
integrated.

FORMULATION

rates o(t) = wft) + i w,(t), which, with the solution of
w: = N.(t) [if there is a torque in the z-direction] are
substituted into Eq. (8). The numerical solution of this
set of equations will give the time functions of the Euler
angles (¢, 6, ¢) which define the inertial transformation
matrix I. The inertial thrust vector is then d-termined,
which, when divided by m(t) and integrated, vields the
inertial velocity vector.
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Ill. SPECIFIC EXAMPLES

Ranger is an ideally suited exampie here, since % of
the weight of the original system is expended. Table B-1
gives the parameters used in the problem.

Table B-1. Ranger parameters

Thrust F (constant), Ib 5500
Burning time t,, sec 9.6
Payload mass, |b 96.0
Flow rate M {constant}, |b/sec 20.0
Spin rate so, rad/sec 30.0
Lever arm ir: {f} {variable), in. See Fig. B-2
Pitch inertia I, Ib-in? See Fig. B-2
inertia ratio, A See Fig. B-2
Capsule mass, M, 1b See Fig. B-2
Thrust misalignment ¢, rad 0.004
initial wobble angle 6,, rad 0.001
ty FI
K= A See Fig. B-2

This problem is identical to that for Ranger in Section
IV-], except there, three points (K = —5000, — 10,00,
—20,000) were used to examine the effect of K on «a.
These three points are seen to represent the K vs ¢ curve

34

on Fig. B-2. Looking at Fig. B-3, the output of the above
problem, it is seen that the K = —10,000 in the approxi-
mation is close to the true solution on Fig. B-3. However,
the shape of the solutions do not agree too closely. If
the proper value of K could be assumed, the approximate
solution could suffice for values of a(t).

The Apollo problenis in Section IV-J were also run on
the big program ‘e illustrate two points. Uf the mass
change is small, * ¢ a(t) in Figs. 22-25 do 1n fact closely
approximate tF - ‘rue solutions in Figs. B-4 through B-7.
The other rea=~ s that the Jarger program allows a look
at V; vs V, { a, real vs g, imaginary. The Apollo
problems were hose~ because the high spin rate of the
Ranger capsule made the ¢, . 20 confusing. Figures
B-8 through B-11 show V; vs V', for the problems listed
in Section 1V-]. The shape ot the curves corroborates the
statements made in Section 1V-F. Figures B-12 through
B-15 show a, real vs a, imaginary. This is the trace that
a ray of light located along the body-fixed z-axis would
make as seen by an observer sitting above the capsule in
the inertial frame.
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APPENDIX C

Thrust Misalignment of Solid Propellant Rockets

An attempt is made in this appendix to justify the use
of { = 0.004 rad for effective thrust misalignment from
data gathered from the in-flight measurements of the
second and third stages of the Scout launch vehicle. All
four stages of the Scout are solid propellant rockets;
however, the first stage burns in the atmosphere, making
any misalignment data almost impossible to separate
from the aerodynamic effects, and the fourth stage is
spin-stabilized. The middle two stages are attitude stabil-
ized by bang-bang peroxide jets in pitch/yaw/roll.*
Vehicle pitch and yaw motion and rates are telemetered
and recorded. The slope cf the pitch rate trace when the
H,O, jets are off gives the vehicle acceleration in the
pitch plane; yaw acceleration is obtained in a like man-
ner. The vehicle nominal thrust, inertia, mass, etc., is
known as a function of flight time. Hence, the effective
thrust rnisalignment may be determined in either the
pitch or the yaw plane.** Figures C-1 and C-2 illustrate
how the thrust misalignment varied on Scout flight S-127.
Table C-1 lists maximum thrust misalignment in degrees
for the second aund third stages for 12 fligiits, ¢, being the

*Roll deadband is = * 1% des. minimizing pitch,yaw coupling.

**This thrust n.dsalignment is effective because it is what the vehicle
sees from ¢ torquing standpoint, hence it includes the effect of
center-of-mass variations, vehicle bending, etc. It is therefore
erroncous to speak “f ¢ as only a solid rocket thrust misalignment.
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Fig. C-1. NASA Scout S-127 2nd stage pitch and yaw
thrust misalignment vs time
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Fig. C-2, NASA Scout $-127 3rd stage pitch and yaw
thrust misalighment vs time
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component in the pitch direction and ¢, being the com-
ponent in the yaw direction. The maximum values do not
necesserily occur simultaneou-ly.

As seen in the table, the value for ¢ rarely goes above

0.2 deg for stage 2 and stage 3. The weight of peroxide
loaded on board for these two stages is based on a 0.25-
deg thrust misalignment for the fuil duration of second
stage burn, and 0.10-deg thrust misalignment for full
duration for third stage burn. The peroxide supply has
never been exhausted. Thus, from the above numbers,
it is thought that a value of { of 0.004 rad (0.23 deg) is
considered conservative for the examples considered i
this Report.

Tebie C-1. Scout thrust misalignment

| Vehicle Sacond stage Third stage
number | {, max, deg | {y max, deg {» max, deg {y me.., deg
ST-6 0.100 0074 0.026 o.on
$T-¢ 0.228 0.048 - -
S-113 ¢.079 0.033 t t
S-114 0.7%6 0.064 - -
S-115 0.1:¢2 0.136 w.048 0.077
$-116 0.090 0.012 4 0.020
S-118 0327 0.027 0.071 0.182
s-119 0.215 0.103 0.065 0.034
§-120 0.134 0.015 0.109¢% 0.455tt
$-122 0.159 0.029 0.069 0.092
§-127 0.130 0.014 0.062 0.077
$-132 0.177 ¢.077 0.110 0.016
tBody oscillations abscured the ‘mean’’ rate data.
ttlew thrust prier to burnout,
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APPENDIX D

ZEROC SPIN RATE

In certain applications, a short, high thrust with no
spin may produce acceptable velocity dispersions (if the
velocity increment is low enough). If such is the case,
the small angle app-oximation made throughout Section
IV no lenger holds. Additionally, if the thrust misalign-
ment is assumed constant {as it has been), the motion
when s, = 0 is confined to two dimensions; either X, or
Y, ~nd Z,. Referring to Fig. D-1, the curved path is the
actual velocity path followed in the X,-Z, plane, and the
straight line (V) is the resultant velocity vector.

The angular acceleration of the body is a function of
the torque, i.e.,

oy L _ IF{
0—1\—-1 =TI (D-1)
whereupon, if the initial tip-off rate is 6,,
0=06, + IIF 4 t, and integrating once again,
8=, + 6ot 4 ‘2’;{:2 (D-2)

= in Cection III, ©. = 0 through the rotation of the
inertial axes an angle ©,. The velocity components are
then seen to be

" t
V.= %f sin@dt
0
1374

gF [t/ = N
= 2— sin §, t cos t* + 20sd, tsin
m/, 21,

IFL
- t)dt
and V’=£mP_'/‘ cos 0 d¢

1]

t >. »
= gFf (cos 8, t cos _I_EC t* — sin Gotsm -27- t’) dt
1] 2

(D-3)

Xo

0
Fig. D-1. Velocity diagram when §, = 0

The integrals in Eq. {D-3) are seen to be modifications
of the Fresnel integral, and if 8, = 0,

<L g F\* 1FT
—um=) S%\/,I :

(=L, @2 F\* TIET (D-4)
V-(—m'.—) Cg\/,z, % |

where C and S are defined in Section 1II-F. The error in
the velocity direction is then

vV, =

a = tan™! % (D-5)
14

and the error in the magnitude is (1 - “i’ )

Unless ¢ is very small (< 1 second), V, will probably

be excessive. The velocity is necessarily kept small so
that the thrust misalignment is reasonably bounded.
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APPENDIX E

DESPINNING

After a body has been spun-up and a maneuver has
occurred, it is often necessary to de-spin. The following
is a brief listing of some despin devices:

1. Gas jet (hot or ccld). The main drawback in addi-
tion to high weight is the fixed total impulse, which
will despin only a fixed number of rpm. That is. if
the jets work perfectly, a 10-rpm error in initial
spin rate will also appear in the final spin rate.

(23]

. Body-fixed magnetic rods in a magnetic. field can
also stop a rotating body (Ref. 13). However, this
method has four main drawbacks: a magnetic field
such as the Earth’s) must be available, the time
involved to stop the rotating body is considerable,
all spin must be removed, and the use of magnetic
rods in the body might have some interactions with
other elements.

3. “Yo-yo's” are devices which decrease spin by re-
leasing weights on vords which unwind due to the
spin, causing large increases in inertia about the
spin-axis. When the cords have unwound, they are
released, taking with them the difference between

_ the initial and final values of angular momentum.

Yo-yo's with both rigid and stretch cords have been
investigated extensively in the past five years (Refs. 9,
14, 15, 16, 17). For reference, the necessary equations

wo .é(u)iwy

(a) ' (b)

for the rigid cord yo-yo are given below, and are taken
from Ref. 14. The deployment of a rigid cord yo-yo is
depicted in Fig. E-1.

If w, = initial spin rate, rad/sec
8 = final spin rate, rad,’scc
v = 6fw, -
m = mass of despin weight (for 1 cord), slug
I = inertia of spinning body about spin axis,
slug-ft
a  =radius of body (to cord attacl.ment), ft

:= required length of cord, ft
T.... = maximum tension in cord, Ib
t = time to despin, sec
then the length of one cord (there are 2 as shown in

Fig. E-1) is
R = [(l—-,) (I+2ma:)]""

5m (177) (E-1)

Note that this equation states that for a given R and m,
y = 6/w, is constant. Hence, yo-yo's take out a given

//’

¢

(c)

Fig. E-1. Rigid cord “yo-yo" deployment
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proportion of spin, and a 1% error in initial spin iate
will remain a 1% error after despin. However, if 6 = 0,
then Eq. (E-1) above beccmes

1--2ma*")
n - [z

which states that to despin to 0 rpm, the dimensions of
the despin mechanism (i.e., R, and m) are independent
of w,. The time to despin is found by letting R = gw.t
in Eq. (E-1) and solving,

t = L[(l—y) (I+2ma=)] '

gy | 2m(1+7)

Thus, the faster the body is spinning, the faster the yo-yo
will stop it. The maximum tension in the cord (which is
assumed massless) is

T — 31«)?. [_31)1 el
max 4 | 2(I-+2ma*)

When the stretch yo-yo is used, the effect of errors in
the body inertia I, initial spin rate w,, cord length R and
despin mass m is minimized.
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